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A connection which is both Einstein and semisymmetric is called an SE connec- 
tion. A generalized n-dimensional Riemannian manifold on which the differential 
geometric structure is imposed by g~u through an SE connection is called an 
n-dimensional SE manifold and denoted by SEX,,. This paper is the introductory 
part of a systematic study of the submanifolds of SEX,,. It introduces a new 
concept of the C-nonholonomic frame of references in SEX,, at points of its 
submanifold and deals with its consequences. The second part will deal with 
the generalized fundamental equations on an SE hypersubmanifold of SEX,,. 
The third part will be devoted to the theory of parallelism in SEX,, and in its 
submanifold. Finally, the last part will study the curvature theory in a submani- 
fold of SEX,,. 

I. I N T R O D U C T I O N  

In Append ix  II to his last book, Einstein (1950) proposed a new unified 

field theory that would  inc lude  both gravi tat ion and  electromagnetism. 
Al though the intent  of this theory is physical,  its exposi t ion is mainly  
geometrical .  It may be characterized as a set of geometrical  postulates for 

the space-t ime X4. However,  the geometrical  consequences  of these postu-  
lates were not  developed very far by Einstein.  Characterizing Einstein 's  

4 -d imens iona l  unified field theory as a set of  geometrical  postulates for X4, 
Hlavat~ (1957) gave its mathemat ica l  founda t ion  for the first time. Since 

then the geometrical  consequences  of these postulates have been developed 
very far, main ly  by Hlavat~. A number  of mathemat ic ians  and  theoretical 

physicists have con t r ibu ted  to the deve lopment  of this theory. 
Genera l iz ing  X4 to an n -d imens iona l  general ized R iemann ian  mani fo ld  

X, ,  Wrede (1958) s tudied Principles A and B o f  Einstein 's  unified field 
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theory for the first time. But his solution of Einstein's equations is not 
surveyable. We also note that Hlavat~'s solution for the first class in X4 is 
not surveyable either. Later, Chung (1963) gave a very handy and surveyable 
solution in the 4-dimensional *g-unified field theory using the method of 
substitution. Chung et al. (1981a, b, 1985) and Mishra (1962) also investi- 
gated the n-dimensional generalization of Principle A, using n-dimensional 
recurrence relations in Xn. However, they also failed to display a surveyable 
tensorial solution of Einstein's equations for the n-dimensional case, prob- 
ably due to the complexity of the higher dimensions. 

Recently Chung et al. (1987) introduced the concept of the n- 
dimensional SE manifold SEX,,  imposing a semisymmetric condition on 
Xn, and found a unique representation of Einstein's connection in a beautiful 
and surveyable form. Later, Chung et al. (1988a, b) also investigated cur- 
vature theory and field equations in SEX,. 

In a series of papers we shall establish a foundation of the geometry 
of submanifolds of SEX,,. The purpose of the present paper is to introduce 
a new concept of the C-nonholonomic frame of reference in a general Xn 
at points of its submanifold and to deal with its consequences in Xn and 
SEX,. This paper contains four sections. Section 2 introduces some pre- 
liminary notations, concepts, and results which are needed in this and 
subsequent papers. Section 3 deals with the C-nonhotonomic frame of 
reference and its consequences in a general Xn. The last section is devoted 
exclusively to the submanifolds of SEXn, and in this section we prove the 
so-called "SE identity." 

All considerations in the present paper are for a general n > 1 and for 
all possible classes and indices of inertia. 

2. PRELIMINARIES 

This section is a brief collection of basic concepts, results, and notations 
which are needed in our subsequent considerations in the present paper. 

Let Xn be a generalized n-dimensional Riemannian manifold referred 
to a real coordinate system y~, which obeys coordinate transformation 
Y v --> y~, for which 

D e t ( ~ )  ~ 0 (2.1) 

the manifold Xn is endowed with a general real, nonsymmetric tensor gA~ 
which may be split into its symmetric part hA~ and skew-symmetric part kAg, 4 

g ~  = h~  + k~  (2.2) 

4Throughout the present paper, Greek indices are used for the holonomic components  of  
tensors in X,,. They take the values 1", 2 , . . . ,  n" and follow the summation convention. 
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where 

g = Det(ga.)  # 0, D = Det(ha.)  # 0 (2.3) 

We may define a unique tensor h ay by 

ha.h a' '= 3~ (2.4) 

The tensors ha. and h a" will serve for raising and~or lowering indices of  
holonomic components of  tensors in X,, in the usual manner. 

The space X~ is assumed to be connected by a real, general connection 
F ; .  with the following transformation rule: 

/3 T 2 
f ,;~ op ~ [ oy" oy '  r ~ + o~y ~ 

-oy ~ kay" oy" ~" oyaoy "] (2.5) 

It may also be decomposed into its symmetric part A~, and skew-symmetric 
part Sa.~: 

F~. = A~. + Sa. ~ (2.6) 

where 

te v A~. = F(~a.), Sa~. = F{a,d (2.7) 

Here A~. is a connection and Sa~. is a tensor, called the torsion tensor of 
the connection F~..  

The connection F~. is said to be Einstein if it satisfies the following 
system of Einstein equations: 

ce 
O~ga~, - F ~ g ~ .  - F o,.gA~ = 0 (2.8a) 

or equivalently 

Do, ga. = 2S.,.~ga~ (2.8b) 

where D~o denotes the symbol of the covariant derivative with respect to 
F,~,.. The manifold X. connected by the Einstein connection will be denoted 
by EXn. In fact, EXn is a generalization of the space-time 324. The connection 
F~. is said to be semisymmetric if its torsion tensor Sa." is of the form 

S~, ~ = 2aEa~X.1 (2.9) 

A connection F~. which is both semisymmetric and Einstein is called an 
SE-connection. An n-dimensional SE manifold, denoted by SEXn in further 
considerations, is a manifold Xn on which the differential geometric struc- 
ture is imposed by ga. through an SE connection F~,~.. 
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A procedure similar to Christoffel's elimination applied to the sym- 
metric part of (2.8b) yields that if the equations (2.8) admit a solution FY,~,, 
it must be of the form (Hlavat~), 1957) 

where 

C,~, = {a~} + Sa~," + U 'a .  (2.10) 

U'aF. : 2h ~S< ACk. ,r (2.11) 

and {s are Christoffel symbols of h,~,. 
It has also been shown (Chung et al., 1987) that there always exists a 

unique n-dimensional SE connection F~. of the form 

F ~, = {a~.} + 2 k(a ~X**) + 26[a~X.~ (2.12) 

for a unique vector Xa given by 

1 x~ n - 1 �9 ~V~,vt3 A 1 .  1. (2.13) 

where V, is the symbolic vector of the covariant derivative with respect to 
{A~}. Therefore, we note that there exists one and only one SEX,.  

The following quantities will be used in our further considerations: 

f -= Det(kA,) (2.14) 

g=9/b, k=f/~ (2.15) 

~~ = 6A", (P)k,~" = ( P - l ) k a ~ k ~ "  , p = 1, 2 , . . .  (2.16) 

3. THE C - N O N H O L O N O M I C  FRAME OF REFERENCE FOR A 
SUBMANIFOLD OF X. 

In this section we establish the foundation of the theory of submanifolds 
Xm of Xn, employing a new concept of C-nonholonomic frame of reference 
in X .  at points o fXm(m < n), and derive some useful consequences of the 
frame. 

Agreement 3.1. In our further considerations in the present and sub- 
sequent papers, we use the following different types of indices: 

(a) Small Greek indices a, /3, % . . . ,  running from 1 to n', and used 
for the holonomic components of tensors in Xn. 

(b) Capital Roman italic indices A, B, C, . . . ,  running from 1 to n and 
used for the C-nonholonomic components of tensors in Xn at points of X,,. 
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(c) Small Roman italic indices i,j, k, . . . ,  with the exception of x, y, 
and z, running from 1 to m (<n) .  

(d) Small Roman italic indices x, y, and z running from m + 1 to n. 
The summation convention is operative with respect to each set of  the 

above indices within their range, with the exception of x, y, and z. 

3.1. C-Nonho lonomic  Frame of  Reference 

Let Xm be a subspace of a generalized n-dimensional Riemannian 
manifold X~, defined by a system of real parametric equations 

y ~ = y ~ ( x ~ , . . . , x  ~) (3.1) 

It is assumed that the functions y " ( x  ~) are sufficiently differentiable and 
the rank of the matrix of  derivatives 

B~ " = ~  (3.2) 
Ox ~ 

is m. Clearly, the subspace X,,, is an m-dimensional differentiable manifold 
in its own right. 

The quantities B~' are contravariant components of a vector in the y 's  
and covariant components  of  a vector in the x's,  respectively. In fact, they 
represent a vector in Xn tangential to the coordinate curves of  parameter  
x i of Xm. The vectors B7 therefore form thefirst  set of linearly independent 
vectors tangential to Xm and generate the tangent space TIn(P) of  Xm at a 
point P of  Xm. Hence, any vector tangential to X,, must be expressible as 
a linear combination of the BI'. In particular, if dy ~ is a small displacement 
vector tangential to Xm and dx ~ denotes the same displacement vector in 
terms of the coordinates of  Xm, we have 

dy ~ = B~ dx'  (3.3) 

More generally, if a vector field tangential to Xm is given by U ~ in the y 's  
and U i in the x's,  respectively, we must have 

U V  ~ i = B, U (3.4) 

Since the rank of the matrix (BT) is m, the condition (2.3) guarantees 
the existence of the first set of n - m  nonnull real vectors N" normal to 

~c 

Xm, which are linearly independent and mutually orthogonal. That is, 

h ~ B ~ N  ~ = 0 ,  h~r  ~ N  ~ = 0  for x r  (3.5a) 
x x y 
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The process of  determining this set is not unique unless m = n - 1. However, 
we may choose their magnitudes such that 

h~r N ~ N 13 = ex (3.5b) 
x x 

where ex = • according as the left-hand side of  (3.5b) is positive or negative. 
Put 

I B [  if a = l , . . . , m  ( = i )  
(3.6) 

E A = / N V  if a = m + l , . . . , n  ( = x )  

Since {E~} is a set of  n linearly independent vectors in Xn at points of  Xm, 
there exists a unique second set {E A} of n linearly independent vectors at 
points of  Xm such that 

A v v A a 
E x E A = ~X , E ~E ~ = 6 A (3.7) 

Now we are ready to introduce the following definition. 

Definition 3.2. The sets E~ and E A will be referred to as the C- 
nonholonomic f rame  o f  reference in X,  at points of Xm. This frame of 
reference gives rise to C-nonholonomic components of a tensor in X, :  I f  
T~Z are holonomic components of  a tensor in Xn, then at points of  Xm its 
C-nonholonomic components  A- TB... are defined by 

T ~ (  . . . .  A = T~...E~ . . .  E ~ . . .  (3.8) 

Remark  3.3. In virtue of  (3.?), an easy inspection shows that 

u ' "  A - "  u B 
T x . . .  = T B . . . E A "  "" E x  " ' "  (3.9) 

Theorem 3.4. The C-nonholonomic components 

a ~ h A B  = laa~ISfAIs fB hAB  = h ~ / 3 E A E B ,  ,, , ~ , ~  (3.10) 

are given by the matrix equations 

( h A B )  = 

h11" "hlmi 

0 

h,,~. �9 �9 hmm : 

i 6m+l  

0 . " ,  

6n 

(3.11a) 
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( h  A B )  = 

h 11 . . . h lm 

0 

h~,~ . . .  h ~m 

gm+I 

, ,  

'~n 
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if A = l , . . . , m  ( = i )  

if A = m + l , . . . , n  ( = x )  

B~,= BABi 

(3.11b) 

x 

~.j -~,,,  , NA = e,. (3.17a) 

x 

u N u Theorem 3.6. Bi,  B~, BA, , and NA are tensors involved in the 

fol lowing identities: 

x x 

i c~ i N ~ x N . B~B i =6j, N~ =t3y, Bi, = N,~B, = 0  (3.16) 
y 

In the fol lowing theorem,  we derive several useful relations in the 
theory  of  submani fo lds  of  Xn. 

(3.15) 

Proof The proper t ies  (3.5) o f  vectors E~  give rise to the matr ix  (hAB). 
The componen t s  h A~ are ob ta ined  f rom 

h A B h  AC = 6 ~ "  (3.12) 

which follows f rom (2.4), (3.7), and (3.10). [] 

Theorem 3.5. In Xn the following relat ions hold: 

u I~ B l~ l~ ua  A 
E A = ~-~o~, ,AB,~  ~ E;~ = E~hABhx~ (3.13) 

Proof Put 

Is B I,, L, ua 
X A = ~ L , c ~ l t A B i t  

Then,  in virtue of  (2.4) and (3.9), we have 

u A A B u a  u a  ~, XAE~, =haBEhE~h =hash =fix 

C o m p a r i n g  this result with (3.7), we have X ~  = E~.  The second equat ion 
may  be ob ta ined  similarly. 

Put 

EA [NA (3.14) 
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x 

~ ~'~ N "  N ~" (3.17b) B~ = B ~ h  h~j, = e~ 
x 

h B ~ = h  B j ,  h A ~ B i = h i j B ~  (3.18) 

x 

B~I = 82 - 2  NA N ~ (3.19a) 
x 

x 

x 

B• N~ = B~ N = 0  (3.19b) 
x 

ce i i u a v v u BA B~ = BA , B , B i  = B i  , B ~ B ~  = BA (3.19c) 

P r o o f  The relations (3.16) and (3.19a) follow from (3.7) in virtue of 
(3.6), (3.14), and (3.15). The relations (3.17) are immediate consequences 
of (3.11) and (3.13). In fact, the relations (3.17b) are equivalent to those 
in (3.17a). The relations (3.18) may be obtained from (3.17). The relations 
satisfied by the tensor B~ may be proved easily by using (3.16) and 
(3.19a). �9 

R e m a r k  3.7. In virtue of (3.16), we note that the set {B~} spans the 
dual space of the tangent space TIn(P)  of Xm at P. In fact, the vectors B~ 
form the s e c o n d  set  of linearly independent vectors tangential to Xm. On 

x 

the other hand, we also note that the set {NA} is the s e c o n d  set  of n -  m 
nonnull real vectors normal to Xm, which are linearly independent and 
mutually orthogonal. They satisfy the last relations of (3.16) and (3.17). 
Obviously, the second set is uniquely determined if the first set is given. 

R e m a r k  3.8. As an application of the last relations of (3.17a) and 
(3.17b) we have 

T x' ..... = exeye.T~y .... (3.20) 

since 

TXyZ.: �9 
y z 

= T ~ "  N , , N p N ~ . . .  

x v k 
= T~,~,... N ~ N ~ 7 . . .  

= e x e . , , e ~ "  �9 " T , ~ v . . .  N '~ N ~ N ~ "  " . 
x y z 

= E x E y E z r x y z . . .  
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3.2.  Induced Tensors  

Let 

37 ~ = 37~(y ~) (3 .21a)  

~ = ~'(x j) (3.21b) 

be two distinct types of coordinate transformations, the former on 32, and 
the latter on Xm. They are of class C 2 with nonvanishing Jacobians and 
are entirely independent of each other. 

As stated at the beginning of the previous section, obviously the B~ 
are components of a type (1, 0) tensor relative to (3.21a) and behave as 
components of  a type (0, 1) tensor relative to (3.21b). 

First of all, we have the following theorem as a consequence of (3.9). 

Theorem 3.9. At each point of Xm any vector T ~ in X, may be expressed 
as the sum of two vectors T B~ and }~x T N ,  the former tangential to X,,, 

x 

the latter normal to Xm. That is, 

or equivalently 

T ~= T~B~+Y, TX N ~ (3.22a) 
x x 

x 

T~ = T~B~ + Z  TxNx (3.22b) 
x 

Furthermore, T i are components of a tangent vector relative to (3.21b), 
while T x is invariant relative to (3.21a) and (3.21b). 

Proof  The relation (3.22a) is another form of (3.9). The equivalence 
of (3.22a) to (3.22b) follows by multiplying by hay on both sides of (3.22a) 
and using (3.17b) and (3.20). It is clear that the first terms of (3.22a) and 
(3.22b) are tangential parts and the second terms normal parts of T ~ and 
T,, respectively. On the other hand, in virtue of (3.2), (3.17b), and (3.21b), 
we have 

/ o y  ~ a ~ k \ /  Oy ~ o,2J\ 
Bo= \ax k a;q) 

= B ~ h ~ h  pk OYi Oy i 
ox-- 7 = B~ ox--- 7 

from which it follows that 

~ i  ~o~ ~ i  or k c3~i T k O:~i 
= T B~ = T B , ~ - - =  (3.23) 

Ox k Ox k 



860 Chang et al 

The relation (3.23) shows that the T i are components of a tangent vector 
to Xm relative to (3.21b). The proof  of the last assertions is obvious. I 

In the previous theorem, we have seen that, if T ~ are components in 
i v the y 's  of  a vector in X, ,  then the vector T B; is its tangential part to Xm 

in the y 's  (while T a a r e  its C-nonholonomic components) at points of Xm, 
and T; are components of  a tangent vector to Xm at points of Xm relative 
to (3.21b). We call T; the induced vector on Xm o f T  ~ in X~. In the following 
definition we generalize this concept to a general tensor T~ill in like manner. 

Definition 3.10. I f  T~ill are the components  in the y 's  of a tensor in 
Xn, the quantities 

i - - .  c~ . . .  i T~...B~ �9 . . . . .  Tj... = Bf  (3.24) 

evaluated at points of  Xm, are components of  a tensor in Xm relative to 
(3.21b) and are called the components o f  the induced tensor on Xm of T~ill 
in X.. 

Therefore, the induced metric tensor g~j on Xm of gA, in X,  may be 
given by 5 

g~j = g~t3B7 B~ (3.25) 

where its symmetric part  h~j and skew-symmetric part k U are 

~ = k ~ B ~ B ~  (3.26) h~j = h~B~ B j  , kij 

so that 

g~j = hq + k~j (3.27) 

In the present paper, we restrict ourselves to subspaces for  which the following 
condition holds6: 

Det(h;j) ~ 0 (3.28) 

In virtue of  the condition (3.28), we may define a unique tensor h 'j by 

h j7  ~k = ~ (3.29a) 

Theorem 3.11. The following statements hold in X~: 
(a) The tensor /T ~ defined by (3.29a) is the induced tensor h ;j on Xm 

of h A~. Hence 

hijh ik = ~ ;  (3.29b) 

5The same induced metric tensor g;; may be obtained from (3.3) in the usual way. 
6Since the metric of X,, is not assumed to be positive definite, it is possible that on certain 
subspaces there exist points for which Det(h;i) = 0. In order to avoid this possibility and the 
complications resulting therefrom, we impose . . .  
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(b) The tensors h ~j and h o may be used for raising and /or  lowering 
indices of the induced tensors on Xm in the usual manner. 

P r o o f  In virtue of (3.26), (3.24), and (3.15)-(3.17), we have 

hijh ik _ ~ /3 ye i k - (h,~/3B~ B; ) (h  B v B ~ )  

" y e R f l R k R o ~  

x 
= (3; - ~ ( Nr  B f ) (  N ~ B k) = 6 k 

which together with (3.29) proves statement (a). For the sake of simplicity 
of the proof  of  statement (b), consider a tensor Tx~ in X, and its induced 
tensor T~j on Xm. Then in virtue of (3.8) and (3.18), we have 

Ti j  h j k  "~ T ~ / 3 B ~  B ~  h j k  = T ~ B T  h/3vBk = - - a ~  R a  Rk-- v ---- T~ 

which proves statement (b). [] 

It should be noted, however, that the reverse relations of (3.26) are 
given, as in the following forms in virtue of (3.9): 

x x 

hx ,  = h~ jB iBJ  + Z ex N A N ,  (3.30a) 
x 

h Ay = h iJB~B;+}~  e~ N ~ N ~ (3.30b) 
x 

3.3.  Induced  C o n n e c t i o n s  

Def in i t ion  3.12. If  F~, is a connection on X,,  the connection F~ 
defined by 

F k  k 3' V a /3 = Bv(B~ j+F~/3B;  Bj  ) (3.31) 

where 

OB~ O2y ~ 

B~J - Ox j - Ox ~ Ox; (3.32) 

is called the induced connect ion on Xm derived f r o m  F ~  on Xn.  
It should be remarked that the torsion tensor S~j k of the induced 

connection F k is the induced tensor on X,, of the torsion tensor S ~  ~ of 
the connection F~, in Xn. That is, 

r ~ u ~ u t 3 u k  (3.33) S i j  k ~-- ~ct/3 a'~i u j  u T 
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Theorem 3.13. The induced connection {~} on Xm derived from the 
Christoffel symbols {A~} on X, are the Christoffel symbols defined by hfj. 
That is, 

= ~h (o,hjp + Ojhip  - Ophij) (3.34) 

Proof In virtue of (3.18), (3.24), and (3.31), our assertion (3.34) follows 
in the following way: 

�89 kp (Oihjp + ojh,p - Oph,j) 

p k  /3 ot 1 pk ~ _O~h~/3)BTB l] =h~13(h Bp)B~j+~(h Bp)(Ooh~+O~h/3~ 

k y ~ 13 = B~({~}B, Bj + B~) = {~} �9 

x 

3.4. The Tensors  1-1 o 

x 

In this section we introduce the tensors f~ij, called the generalized 
0 

coefficients of  the second fundamental form of  Xm. Let Dj be the symbolic 
vector of the generalized covariant derivative with respect to the x's. Then 

0 
c~ o~ a 13 3'  k ~ (3.35) mjBi = Bij + F ~;,Bi Bj - F ijBk 

0 

Theorem 3.14. The vector DjB~ in X~ is normal to Xm and may be 
given by 

x o N ~ DjB~ = - E ~ j  x (3.36) 
x 

where 

x 0 x 

~ij = - (DjB~)  N~ (3.37) 

Proof Multiplying by B~ on both sides of (3.35), we have 
0 0 

(DjB~)B~ =0,  which shows that the vector DjB7 is normal to Xm. The 
Y 

relation (3.37) follows from (3.36) by multiplying by N~ on both sides of 
(3.36) and making use of (3.16). �9 

x 

Theorem 3.15. The tensors ~ij are the induced tensors on X,, of the 
tensor D/3N ~ in X,. That is, 

x x 

D<j = ( D13N~ ) B~ B~ (3.38) 
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Proof Substituting (3.35) into (3.37) and making use of (3.16) and the 
relation 

x cr x x 

0 = Oj(B~' N~) = B,j No, + (a ,N~)BTBy 

we may easily derive the relation (3.38). �9 

4. THE S U B M A N I F O L D S  OF SEX.  A N D  T H E  SE IDENTITY 

In this section, we shall prove that the induced connection on a 
submanifold of SEX, is the SE connection and that a very useful so-called 
SE identity holds on a submanifold of SEX,.  

Theorem 4.1. The induced connection F~ on a subspace Xm of the SE 
connection F~g on X,  is of the form 

C~ : {/~} + 2k(ikXj)+ 23{ikXj] (4.1) 

where {/~} are the induced Christoffel symbols defined by (3.34) and Xi is 
the induced vector on Xm of the unique vector XA determining F ~ .  That is, 

X, = X~B7 (4.2) 

Proof Substituting (2.12) into (3.31) and making use of (3.24) and 
(4.2), we have (4.1). II 

Theorem 4.2. The induced connection F~ on Xm, given by (4.1), of 
F~,,~ on X,  is an SE connection. 

Proof In virtue of (4.1), it is obvious that F~ is semisymmetric. In 
order to prove that F~i is Einstein, introduce the symbols Dj to denote the 
symbolic vector of  the covariant derivative with respect to F k. In virtue 
of  (2.8b), (2.9), (3.25), and (4.2), it follows from (3.24) that 

- -  t o  A / x  
Dkgij - (D, og,~,)Bk Bi Bj 

- 2S,o~ g ~ B k  Bi Bj 
= 2(62X~ga~, - ~ ~o A 3~X,~ga~,)Bk Bi B~ 

=2(XugAo_ ,o ~ ~, Xo~ga~)Bk Bi Bj 

= 2(Xj&k - Xkg,j) 

= 46[kPXj]gi,, 

= 2 SkPgip 

which shows that F~ satisfies the Einstein condition. 1 

Remark 4.3. In virtue of the above theorem, we note that every subspace 
of  SEXn connected by the induced connection of the SE connection on a 
SEX, is also an SE manifold. 
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Agreement  4.4. In our further considerations, we use the symbol Xm 
exclusively to denote that submanifold o f  S E X ,  connected by the induced 
connection Fki o f  F~,  on S E X , .  

Our final consequence in this section is the discovery of the following 
useful identity, which holds on X,,. Indeed, this identity will give many 
applications and contributions in the future study of the structure of Arm. 

Theorem 4.5. (The SE identity.) On X~ the following identity holds: 

x x 

E k ~ ( a f k B j  - f ~ j B ,  ) N  - - 0  (4.3) 
x 

Proof  Since the induced connection F~ is Einstein in virtue of 
Theorem 4.2, it must satisfy the following Einstein equations: 

P P Okgq -- F ikgpj -- F ~jg~p = 0 

In virtue of (3.35) and (3.36), we first note that 

(4.4) 

Y 

Bi~+r~  ut~uv ~ ~ N ~ ~ ' i  ~j = F,jB~ -Y~ flij (4.5) 
Y 

Y 

Substituting (3.25) and (3.31) into (4.4) and making use of (3.15), we have 

F~,t3Bi Bk)ga~,B~ By  O k ( g ~ r  ~ ~ ~ ~ ~ 

( B k j - t - F ~ B k B  j )gx.B~ B~, = 0 (4.6) 

The first term of (4.6) may be rewritten as 

First Term=(0~g~t3 ~ ~ ~ ~ ~ ~ ~ (4.7) )B~ Bj  Bk + g~B~kBj  + g~t3B~ Big 

In virtue of (3.19a), the second term of (4.6) can be written as 

Second Term 

x 

= - ( B ~ +  r v  B ~ B  ~ "  B ~ - V  N A N v )  a a f l  i k ] , ~ A ~ .  J \ t i t  "% x 
x 

( B ~ +  ~' ~ ~ = - F ~ B ~  B k ) g ~ B j  

y x 

+ P ~ ~ B"  N A (F,~B,-Ea,kN)g~. ~ E Nv 
y x 

y x 

x 

-- - g ~  B ~,k B j ~ - g ~ F ~ B T B ~ B ' ~ - g ~ , B ~ Z ~ k N  (4.8a) 



Submanifoids of SEX.. I 865 

w h e r e  u s e  h a s  b e e n  m a d e  o f  (3 .16)  a n d  (4.5) .  Bu t  t h e  r e l a t i o n s  (2 .2) ,  (3 .16) ,  

a n d  ( Y l 7 b )  a l l o w  t he  t h i r d  t e r m  o f  t he  las t  e q u a l i t y  o f  (4 .8a)  to  b e  e x p r e s s e d  

in t h e  f o r m  

x x c~ 

S u b s t i t u t i n g  t h i s  i n t o  (4 .8a) ,  we h a v e  

S e c o n d  T e r m  

x 

_ ~ ~ ~ ~ ~ ~ ~ Nl3 -- -- g~t~BikBj - g ~ F ~ B ~  B j  B k + k~r ~ ~ZikB,j x 
x 

S i m i l a r l y ,  t h e  t h i r d  t e r m  o f  (4.6) m a y  b e  o b t a i n e d  as 

T h i r d  T e r m  

(4 .8b)  

x 

/3 ~ ~ r ~' ~ N ~ (4.9) = -g~t3B~ B k j - g ~ F ~ t ~ B ~  B j  Bk+k~13 ~ O k j B i  x 
x 

W e  n o w  s u b s t i t u t e  (4 .7) ,  (4 .8b) ,  a n d  (4.9) i n t o  (4.6)  to  f ind  

x x 
o~ cz 

x 

T h i s  p r o v e s  (4.3) in  v i r t u e  o f  (2 .8a) .  [ ]  
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